

Rotorua Geothermal System Intrinsic Values and Surface Features **BRADLEY SCOTT** Volcano Surveillance Co-ordinator

PETER BROWNBRIDGE ROTORUA DISTRICT COUNCIL

# Geothermal

What is it ? How does it originate ? Where is it found ? Can we exploit it ? What are the problems ?

## Geothermal energy is heat within the Earth

## Three sources:

- 1. Radioactive decay of minerals in the crust
- 2. Primordial heat from the centre
- 3. Volcanism

## Two transport mechanisms:

- 1. conduction
- 2. convection

## Classification of geothermal resources

**Temperature**: range encountered 20-500 °C

Enthalpy (*heat content*): ranges from 150-2700 kJ/kg

High-temperature: above 100 °C, enthalpy >1000 kJ/kg Low-temperature: < 100 °C, enthalpy <1000 kJ/kg









#### Location of Geothermal Systems

**GNS Science** 



## Origin of thermal features





## Natural Thermal Features:

- Geysers
- Hot springs
- Hot pools
- Mud pools
- Sinter terraces
- Areas of thermal ground
- Algal mats
- Thermophyllic plants







### Worth preserving ?

rare - worldwide tourist attraction cultural value intrinsic beauty dynamic

#### Effects on natural thermal features

#### Pre-development

1997







Activity almost dead overgrown with vegetation







#### Eagles Nest Geyser Wairakei



**GNS Science** 

#### Papakura Geyser Rotorua



A Crow's Nest Geyser, the Spa geyser basin (Lloyd photo); B Waipikirangi Geyser, the Spa (Lloyd photo); C Prince of Wales Feather Geyser, Geyser Valley (Isles photo); D Twins Geyser, Geyser Valley (photographer unknown); É Porangi Geyser, Orakeikorako (Lloyd photo); F Waikite Geyser, Whakarewarewa (Lloyd photo)

#### All lost by the 1070's

#### Ohaaki Pool (NZ)



#### before development (1952) during well testing (1969)



# Effects of reservoir pressure drawdown





## History of changes to natural thermal features in NZ

- Rotomahana Pink & White Terraces totally destroyed by volcanic eruption in 1886
- Orakeikorako about 2/3 features submerged by L. Ohakuri in 1961
- **Tauhara (Spa sights )** affected by lowering of river level in 1942, then killed by development of Wairakei field in early 1960's
- Wairakei most features dead by 1965 as a result of development
- **Rotorua** many features severely affected by drilling 1930-70's as a result of withdrawal of hot water
- **Ohaaki** Ohaaki Ngawha affected by development in 1968

## Rotorua Geothermal Field

• Unique in that it lies beneath a major city

#### Three major time periods;

- Traditional use and natural state 1800's to 1950
- Intensive extraction of fluid and heat from the field 1950 to 1986
- Bore closure and post closure recovery 1986 to present

#### Rotorua Geothermal System



### Rotorua Geothermal System



### Distribution of bores



## History

- 1953 Geothermal Energy Act. Bores deeper than 61m needed to be licenced.
- 1967 Rotorua Empowering Act. No bores are licened, exploitation progressed in an unplanned manner with no regard to sustainability or protection of the values
- 1970's large decline in surface activity, public concern starts
- 1980 Ministry of Energy announces guidelines, no new drilling
- 1982 agreement is reached for a monitoring programme
- Establishes fluid is wasted through inefficient use and that aquifer levels continued to decline
- 1986 Rotorua Empowering Act revoked, bore closures ordered within 1.5km of geysers
- Recovery starts .....

#### Results from the Monitoring Programme (1984-86)



#### Distribution of bores



#### Before closures

#### After closures



#### Monitor Bore - results



#### Useage



#### Rotorua Geothermal Field A Success Story ?





## **Hot Springs**

- Kuirau and Ohinemutu
  - Springs have recovered
- Govt Gardens, Ngapuna
  - Springs have recovered
- Whakarewarewa (Te Puia)
  - Some springs have recovered
  - Some geysers have, others have stopped

#### Borefield

- Bore field aquifer levels are up
- Net use is down
- Management Plan in place
- Monitoring in place



## Chloride Springs

#### some have recovered





## Chloride Springs- Geysers



#### Problems ..... A couple

- Lack of acceptance control was/is needed
- Building over failed springs
- Building over abandoned wells
- No management of soak bores







## Built over warm ground









#### Built over failed springs

## Hydrothermal eruptions















159

18/9/2000

## **Controlled development**









## Acid Sulphate – discoloured pools



## Acid Sulphate – collapses





